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Random Walk to and Interaction with an Impurity 

Peter M. Richards I 

A random walker tagged with a spin may conveniently be studied by small 
amounts of paramagnetic impurities which significantly affect the spin relax- 
ation at concentrations as low as a few parts per million. Examples are found in 
nuclear magnetic resonance (NMR) and muon spin rotation (/~SR). At low 
temperature relaxation is determined by the time for the walker to reach an 
impurity, and thus the impurity acts like a simple trap. Details of the interaction 
with the impurity are important at higher temperatures, and the relaxation rate 
is shown to go through a maximum because of this. Special features associated 
with many returns to the origin, particularly important in one-dimensional 
walks, and the difference between incoherent (rapidly fluctuating paramagnetic 
spin) and coherent (stationary paramagnetic spin) returns are discussed. 

KEY WORDS: Nuclear magnetic resonance; paramagnetic impurities; 
diffusion; low dimensionality. 

1. INTRODUCTION 

Small amounts of impurities or defects in a lattice can provide a useful 
probe of the random walk of a particle or excitation in the otherwise 
regular lattice. The most obvious example is that of an absorbing trap ( l~ 
into which the particle walks and cannot escape. The "lifetime" of the 
particle or its associated property being investigated is just the time re- 
quired to execute a random walk from some starting point to a trap, 
suitably averaged over all random starting points and trap positions. 

The impurity dealt with here is a paramagnetic ion" in an otherwise 
nonmagnetic lattice which influences the spin relaxation of a diffusing 
particle. In some cases it acts like a simple trap so that the resulting spin 
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relaxation time is the same as computed in trapping models. But in others, 
where the interaction is relatively weak and/or  the particle motion fast, the 
situation is different: The spin is not completely relaxed in its encounter 
with the impurity and continues on to make other encounters. However, as 
opposed to a simple momentary trapping followed by escape picture, the 
particle's spin carries a memory of each previous encounter. Since the 
trapping model is treated in some detail elsewhere in this issue, (~) my main 
emphasis is on those aspects where the paramagnetic ion differs from a 
simple trap. 

The experimental technique is most commonly nuclear magnetic reso- 
nance (NMR) which monitors the spin of the diffusing particle. Recently 
muon spin rotation (/~SR) has also been employed (2) to study a diffusing 
particle, in this case the muon (/~-meson), by its interaction with impurities. 
Knowledge of how impurities affect the spin relaxation is important for two 
reasons. First, the impurity can prove to be a means of studying the 
diffusion. This is clearly illustrated by an example taken from/~SR in Fig. 
1. The muon maintains its spin polarization when brought to thermal 
equilibrium in a solid unless it interacts strongly with other spins. This can 
be accomplished by nuclear spins of the host in metals such as copper 
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Fig. 1. Muon depolarization rates in gold doped with gadolinium and erbium, from Ref. 2. 
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which have strong nuclear moments, but not in silver and gold where the 
moments are very weak. Thus there is no convenient means of monitoring 
the muon in pure silver and gold but, as shown, a sizeable depolarization 
can be produced by small amounts of paramagnetic impurity. In this 
manner properties of muon motion in noble metals have been studied by 
the introduction of impurities. 

A second reason is that the impurity question has to be dealt with 
whether one likes it or not. This is pointed out in Fig. 2 where one sees that 
as small as 20 parts per million (ppm) paramagnetic impurities make a 
sizable effect on the NMR. Nominally "pure" material generally has at 
least this high a concentration, so unless great care is taken, the NMR 
experimentalist will often be observing effects due to paramagnetic impuri- 
ties, which obviously must be understood for meaningful interpretation of 
the results. Indeed it has become apparent with evidence such as in Fig. 2 
that many earlier NMR phenomena which were either unexplained or 
proposed as evidence for exotic types of motion were in fact caused by 
unsuspected small amounts of paramagnetic ions. 

The use of paramagnetic impurities to study particle motion in solids 
and their importance in understanding NMR was not fully appreciated 

Fig. 2. 
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Proton NMR relaxation in yttrium dihydride with various amounts of gadolinium 
impurities. Taken from M. Belhoul et al., J. Phys. F, to be published. 
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until recent years (3~ during which interest in diffusing nuclei has occurred 
in conjunction with active research on fast-ion (superionic) conductors and 
hydrogen in metals and metal hydrides. The pioneering work (3) of Jac- 
carino and co-workers at Santa Barbara has led to more thorough treat- 
ments, (4'5) to which the reader is referred for details. Numerous references 
to experimental work other than given here may be found in those 
references as well. The author has also dealt with how a one-dimensional 
(1D) random walk to an impurity gives rise to special effects. (6'v) 

Since many of the details can be found elsewhere, (4-7) the present 
paper is meant to serve as a general introduction to the subject which 
emphasizes qualitative features. However, some new material related to 
walks with many returns to the same site, such as in 1D, is included with 
attention called to the differences between "coherent" and "incoherent" 
returns, depending on whether or not the spin of the paramagnetic ion 
fluctuates in the time from one return to the next. The results are summa- 
rized in Table I. 

2. T H E O R Y  OF T E M P E R A T U R E  D E P E N D E N C E  

It is evident from Fig. 1 and to a lesser extent from Fig. 2 that the 
relaxation rate due to paramagnetic impurities goes through a maximum vs. 
temperature. This feature is explained here where we point out that the two 
parts of the title "Walk to" and "Interaction with" can be identified with 
the low- and high-temperature sides of the peak, respectively. 

The relaxation time T R can crudely be considered as a sum 

TR= r, (1) 

where T W is the average "walk to" time it takes a particle to come to the 
neighborhood of an impurity and T 1 is the additional time required for 
relaxation once the impurity is encountered. As long as the impurity does 
not affect the hopping rate in its vicinity, T W is independent of the nature 
of the impurity and is the same as if the impurity were considered as an 
ideal trap. For  normal thermally activated diffusion T w is very long at low 
temperatures so that T R ~ T w and traplike behavior is observed. As T W 

decreases rapidly with temperature, it can become much less than T1, in 
which case T R ~ T I which depends on the nature of ("interaction with") 
the impurity. This is the situation of interest here, where the paramagnetic 
impurity gives results different from a simple trap. We show below that T 1 

is expected to be an increasing function of temperature which accounts for 
T R going through a minimum. 

The paramagnetic ion interacts with the nuclear or muon spin I by an 
effective field H~ which is proportional to components of the impurity spin 
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S. The generally complex problem can be simplified by assuming that H 1 is 
only in the z direction of the applied field used to monitor the resonance 
and is proportional to S z. Then the perturbation acts like a fluctuating 
frequency oa(t') which causes dephasing according to 

I;: l I+ (t) = I+ (0)exp i oo(t')dt' (2) 

with ~o(t') = A (t')Sz(t'). I+ is the observed rotating component of nuclear 
spin, and A (t') is the interaction frequency whose time dependence is taken 
to be such that A ( t ' ) =  A for times the particle is at a nearest-neighbor 
distance from an impurity and zero otherwise. Time dependence of Sz(t') 
comes from fluctuations with a characteristic spin lattice relaxation time rsL 
through coupling to lattice vibrations. (Coupling to other paramagnetic ions 
can also contribute to fluctuations, but we assume sufficiently low concen- 
tration that this can be ignored.) Treatments of more realistic interactions 
may be found in Refs. 4 and 5, but they do not differ qualitatively from 
what is presented here. 

If the fluctuations of Sz(t') are described by a Gaussian random 
process, Eq. (2) becomes, on the average over the states of S~(t'), 

I+ (af ter ) / /+  (before) -= ~(z) 

= exp[ - A2(  Sz2) s  - t')e-*'/'sLdt ' ] 

-- e -a  (3) 

where r is the time the particle remains at nearest-neighbor distance and 
"before" and "after" indicate times immediately before and after the 
encounter of duration r. Note that if we define the correlation time r c by 
A = A2(S~)rrc ,  then % = r /2 ,  rSL in the respective limits r << rsL, r >> "rSL. 

For A > 1, relaxation is essentially acheived in one encounter, which is 
the case for r sufficiently long, i.e., low temperature. As r and rsL shorten 
with increasing temperature, A becomes less than unity, and it takes more 
than one encounter to depolarize the spin. If each successive encounter is 
independent, the result of N, encounters with impurities in time ~" is to 
make the relaxation q5(,)= [r = e-:Vs A. This is because there is no 
change in the amplitude of I+ (t) during "free precession" time periods 
when no impurity is encountered. Thus the proper I+ (before) at the 
beginning of each encounter has an amplitude given by that of I§ (after) 
from the previous encounter. This is what is meant by the spin retaining a 
memory of each encounter--it can be relaxed in stages. 

For A<< 1 it takes on the order of I /A  encounters to achieve relax- 
ation, which requires a time T 1 = T w / A  since the average time between 
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each encounter is T w if the impurities are randomly located. Also if returns 
to the the same impurity are neglected, it follows that T w = . c /p ,  where p, 
proportional to the impurity concentration, is the probability that a given 
site on the walk is next to an impurity. Combining this with the definition 
of % given under Eq. (3) yields 

T ~ ( p A 2 ( S 2 > , c c )  - l  (A<< 1) (4) 

The noteworthy points are that the dwell time ~- cancels out of the 
expression for T~ and that T I is inversely proportional to a characteristic 
time % whereas T w is proportional to r. Thus, T w and T 1 have opposite 
temperature dependences so that a minimum relaxation time T R -- T w + T x 

is expected, as seen in Figs. 1 and 2. The dependence of T, on the 
properties of the impurity is displayed in Eq. (4). As well as depending on 
the strength of the interaction, it depends on the spin lattice relaxation time 
"rSL if, as is often the case, rse << r so that r c ~ rSL. This illustrates how spin 
relaxation by paramagnetic impurities can be used to advantage. At rela- 
tively low temperatures where T R ~ ,  T w ,  properties of the random walk can 
be studied independent of the nature of the impurity, and at higher 
temperatures where T R ~ T I one can study properties of the impurity and 
interactions. 

3. FORMAL TREATMENT, MULTIRETURNS, AND COHERENCE 

Having seen the qualitative features which produce a minimum relax- 
ation time T R vs. temperature, we proceed to a more formal development 
which reproduces the above results and also serves as a convenient means 
of treating walks with many returns to the origin, such as in 1D. Equation 
(2) is valid for all times within the framework of the model. For nearest- 
neighbor-only interactions we can write the integral as 

N ni 

( ' o a (  t ' )  d t ' =  A ~,, ~ f tk +~k "~z" t . . . . .  P i Z ,  / '  '~ i t  )a~ (5) 
dO i =  1 k i =  1 .Jtkj 

where the first sum is over all di f feren~ sites occupied by the particle during 
its walk, there being a total of N such sites in time t; pi = 1 if the site i is a 
neighbor of impurity spin S~ and 0 otherwise. The ith site is visited a total 
of n~ times, the kth visit lasting between tk, and t~, + %.  We assume that 
there is only one site i at which the particle can interact with Si. This is not 
the case for most real lattices, but it makes the analysis simpler without 
losing the essential features. 

The observed relaxation is obtained by inserting Eq. (5) in (2) and 
performing an average over all the variables. The average over the impurity 
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distribution p~ is handled in the same manner used in trapping studies. ~ ~ 
For the other variables we consider two limits below. 

3.1. Incoherent Returns 

Assume the spin lattice relaxation is sufficiently rapid that %L << tk,+, -- 
t~i. In this case, each visit to the same site [each term in the summation over 
k~ in Eq. (5)] is independent since the spin S z has lost all memory of its 
orientation at the previous visit. This "incoherent" condition is essentially 
the same as "rSL << %i since the first return, if it occurs at all, is most 
probable on the next jump after the particle has jumped away from the 
origin. It then follows from Eq. (3) and the method of averaging over Pi that 
the total relaxation function is 

q)(t) = I-I exp - p  1 - exp - • Ak (%L << ~'k,) (6) 
i=1  k = l  

Ak, is the same as A in Eq. (3) except that ~- is replaced by ~'k, to allow for a 
distribution of dwell times in general. For the ensuing discussion, however, 
we take %, -- ~- and Ak, ---- A, i.e., the same dwell time and relaxation at each 
encounter, in order to keep matters simple without altering the essential 
features. For n~A>> 1, q~(t) ---- (e-NP),  which is the result for traps. In a 3D 
walk where ni~  1 (n~ ~ 1.5, for example, for the average number of visits to 
a given site in a walk on a simple cubic lattice), this condition for 
trappinglike behavior is essentially just A >> 1, as in the previous section. In 
1D, however, n~ increases without limit as a function of time so the situation 
is quite different. For the random walk of a single particle on a uniform 1D 
lattice, both n, the number of different sites visited, and n~, the number of 
visits to the same site, are proportional to (t/~-) 1/2. As a consequence the 
consistency condition for traplike behavior is that the relaxation time T n 
satisfy (TR/r)1/2p ~ 1 while at the same time (TR/'r) 1/2A >> l, i.e,, ~ / p  >> 1, 
which is much less stringent than the 3D condition 2x>> 1 when the 
concentration p is small. This result can be extended to some other models 
of 1D random walks (8'9~ which are characterized by the mean square 
displacement satisfying ( x  2) cc t 1-s with 0 < s < 1, and thus N c~ t ( 1 - s ) / 2  

A scaling argument (9~ shows that n i oct (l+s)/2 and thereby produces the 
results shown in Table I. 

The weak interaction limit is characterized by Ans << 1. In this case, the 
particle must visit several different sites in order to be relaxed, and Eq. (6) 
gives 

~'(t) = ( e -  ~pZ~= l,, ) (an~ << l, rs~ << ~) (7) 
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This has a simple interpretation since ~,N=ln i is just the total number of 
hops, t/,r, in time t, which is independent of the geometry or other details 
of the walk. For example, from above, Nns ec t ( l -~/at(  1+~)/2 = t. Thus in 
this limit the relaxation rate always varies linearly with concentration for 
small p. 

3,2. Coherent Returns 

In the limit of very weak spin lattice relaxation the spin S i maintains 
the same orientation for each visit to the site i. The returns are then said to 
be "coherent" and the coefficient of pi in Eq. (5) reduces to S[(O)ni'r, with 
ni~" the total time spent at the site. As in Eq. (3) we approximate the average 
over the 2S + 1 possible values of Si z = - S, - S + 1 . . . . .  S -  1,S by a 
Gaussian so that 

N 

~( t )~ i~=l  ( e x p { - p [  1 -  e x p ( -  2xn~)l } 1 (8) 

where 2x is the same as in Eq. (3) with TSL~ m and, as in the treatment 
following Eq. (6), we take 2x~i = & the same amount of relaxation for each 
visit. The product of averages in Eq. (8) is valid since the static orientations 
of S i and Sj at different sites i and j are uncorrelated. Equation (8) differs 
from (6) only in that the factor n~ for incoherent returns is replaced by n 2 
for coherent returns, which obviously can make a major change if ni >> 1. 

It follows that the replacement of n i by n 2 changes a result in Section 
3.1 from zX/pr>> 1 to ZX/p2r>> 1 as the condition for traplike behavior, 
where r is whatever exponent appeared in the expression for a given walk 
model. Thus, as expected, the trapping tendency (no need to find other 
impurities beyond the first) is greatly enhanced for coherent returns. 

The weak interaction limit proves to be more interesting than in the 
incoherent case since the expression analogous to Eq. (7) would contain 
2N=ln?~Nn~,  which does depend on details of the walk. From before, if 
Noc t (1-s)/2, niec t (~+'~/2 for the 1D walk where (x2)cc t ~-s, we have 
Nn~oc t (3+s~/2 whereby the concentration dependence of the relaxation 
rate is Tn - t  ocp 2/(3+s) compared with the simple linear dependence for 
incoherent returns. 

4. DISCUSSION 

We have given some qualitative and semiquantitative arguments for 
the dependence of relaxation time T e due to paramagnetic impurities on 
temperature, concentration, and interaction strength. The results are sum- 
marized in Table I. Particular attention was paid to the question of when 
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the impurity acts like a simple trap, in which case T R ~ T w ,  the time to 
walk to the impurity, and when it does not, in which case T R is affected by 
details of the interaction and impurity spin lattice relaxation. The condition 
for T R , ~  T w was shown to be most easily satisfied for one-dimensional 
(1D) walks and coherent (very long spin lattice relaxation) returns. 

Comparison between theory and experiment is disucssed in some detail 
in Refs. 2, 4, 5, and 7. The situation generally is that good agreement has 
been found in three-dimensional lattices when the calculation has been 
done in sufficient detail. Complications in this regard are that (i) the 
long-range r -3 part of the dipolar interactions, which has totally been 
neglected here, often has to be included. This makes a much more difficult 
problem which has mostly been handled by approximating the walk by a 
continuum diffusion, (1~ although a discrete calculation has also been 
performed.(12) (ii) For most realistic 3D lattices the number of returns is 
significant so that a detailed lattice description is required. For example, if 
the particle hops on a simple cubic lattice with impurity sites at the body 
centers, there are an average of more than 4 visits to the 8 sites which are 
neighbors of an impurity, assuming one of these sites is visited initially. (iii) 
The interaction is not the simple form used here which includes only the z 
component of local field parallel to the applied field. Indeed, relaxation of 
the z component of nuclear spin, which is often what is observed rather 
than dephasing, is impossible in this case. A particularly thorough study 
which addresses (ii) and (iii) is contained in Ref. 5. 

Several interesting features are predicted for 1D random walks to 
impurities. Although there are fast ion conductors which exhibit 1D mo- 
tion, N M R  studies (13~ thus far have failed to give an unequivocal demon- 
stration of the qualitative differences such as in concentration dependence. 
A major problem is that there is always some weak 2D or 3D character 
which may be sufficient to mask the effects unless the anisotropy of motion 
is extremely high. This point is treated in Ref. 7. 

A challenge to the random-walk theorist can be to perform correctly 
the averages required in Eqs. (5) and (6) for arbitrary strengths of the 
interactions and values of the spin lattice relaxation. They have generally 
been done only in the extreme limits or with certain questionable asump- 
tions regarding the processes. 
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